全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

The separating gonality of a separating real curve

Full-Text   Cite this paper   Add to My Lib

Abstract:

A smooth real curve is called separating in case the complement of the real locus inside the complex locus is disconnected. This is the case if there exists a morphism to the projective line whose inverse image of the real locus of the projective line is the real locus of the curve. Such morphism is called a separating morphism. The minimal degree of a separating morphism is called the separating gonality. The separating gonality cannot be less than the number s of the connected components of the real locus of the curve. A theorem of Ahlfors implies this separating gonality is at most the g+1 with g the genus of the curve. A better upper bound depending on s is proved by Gabard. In this paper we prove that there are no more restrictions on the values of the separating gonality.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133