|
Mathematics 2011
Quantum Grothendieck rings and derived Hall algebrasAbstract: We obtain a presentation of the t-deformed Grothendieck ring of a quantum loop algebra of Dynkin type A, D, E. Specializing t at the the square root of the cardinality of a finite field F, we obtain an isomorphism with the derived Hall algebra of the derived category of a quiver Q of the same Dynkin type. Along the way, we study for each choice of orientation Q a tensor subcategory whose t-deformed Grothendieck ring is isomorphic to the positive part of a quantum enveloping algebra of the same Dynkin type, where the classes of simple objects correspond to Lusztig's dual canonical basis.
|