全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Cluster point processes on manifolds

Full-Text   Cite this paper   Add to My Lib

Abstract:

The probability distribution $\mu_{cl}$ of a general cluster point process in a Riemannian manifold $X$ (with independent random clusters attached to points of a configuration with distribution $\mu$) is studied via the projection of an auxiliary measure $\hat{\mu}$ in the space of configurations $\hat{\gamma}=\{(x,\bar{y})\}\subset X\times\mathfrak{X}$, where $x\in X$ indicates a cluster "centre" and $\bar{y}\in\mathfrak{X}:=\bigsqcup_{n} X^n$ represents a corresponding cluster relative to $x$. We show that the measure $\mu_{cl}$ is quasi-invariant with respect to the group $Diff_{0}(X)$ of compactly supported diffeomorphisms of $X$, and prove an integration-by-parts formula for $\mu_{cl}$. The associated equilibrium stochastic dynamics is then constructed using the method of Dirichlet forms. General constructions are illustrated by examples including Euclidean spaces, Lie groups, homogeneous spaces, Riemannian manifolds of nonpositive curvature and metric spaces. The paper is an extension of our earlier results for Poisson cluster measures [J. Funct. Analysis 256 (2009) 432-478] and for Gibbs cluster measures [arxiv:1007.3148], where different projection constructions were utilised.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133