全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Brownian motion and Harmonic functions on Sol(p,q)

DOI: 10.1093/imrn/rnr232

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Lie group Sol(p,q) is the semidirect product induced by the action of the real numbers R on the plane R^2 which is given by (x,y) --> (exp{p z} x, exp{-q z} y), where z is in R. Viewing Sol(p,q) as a 3-dimensional manifold, it carries a natural Riemannian metric and Laplace-Beltrami operator. We add a linear drift term in the z-variable to the latter, and study the associated Brownian motion with drift. We derive a central limit theorem and compute the rate of escape. Also, we introduce the natural geometric compactification of Sol(p,q) and explain how Brownian motion converges almost surely to the boundary in the resulting topology. We also study all positive harmonic functions for the Laplacian with drift, and determine explicitly all minimal harmonic functions. All this is carried out with a strong emphasis on understanding and using the geometric features of Sol(p,q), and in particular the fact that it can be described as the horocyclic product of two hyperbolic planes with curvatures -p^2 and -q^2, respectively.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133