全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Mixing of the upper triangular matrix walk

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study a natural random walk over the upper triangular matrices, with entries in the field $\Z_2$, generated by steps which add row $i+1$ to row $i$. We show that the mixing time of the lazy random walk is $O(n^2)$ which is optimal up to constants. Our proof makes key use of the linear structure of the group and extends to walks on the upper triangular matrices over the fields $\Z_q$ for $q$ prime.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133