全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

A Koszul category of representations of finitary Lie algebras

Full-Text   Cite this paper   Add to My Lib

Abstract:

We find for each simple finitary Lie algebra $\mathfrak{g}$ a category $\mathbb{T}_\mathfrak{g}$ of integrable modules in which the tensor product of copies of the natural and conatural modules are injective. The objects in $\mathbb{T}_\mathfrak{g}$ can be defined as the finite length absolute weight modules, where by absolute weight module we mean a module which is a weight module for every splitting Cartan subalgebra of $\mathfrak{g}$. The category $\mathbb{T}_\mathfrak{g}$ is Koszul in the sense that it is antiequivalent to the category of locally unitary finite-dimensional modules over a certain direct limit of finite-dimensional Koszul algebras. We describe these finite-dimensional algebras explicitly. We also prove an equivalence of the categories $\mathbb{T}_{o(\infty)}$ and $\mathbb{T}_{sp(\infty)}$ corresponding respectively to the orthogonal and symplectic finitary Lie algebras $o(\infty)$, $sp(\infty)$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133