全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Super-Poincaré and Nash-type inequalities for Subordinated Semigroups

Full-Text   Cite this paper   Add to My Lib

Abstract:

We prove that if a super-Poincar\'e inequality is satisfied by an infinitesimal generator $-A$ of a symmetric contracting semigroup then it implies a corresponding super-Poincar\'e inequality for $-g(A)$ with any Bernstein function $g$. We also study the converse statement. We deduce similar results for the Nash-type inequality. Our results applied to fractional powers of $A$ and to $\log(I+A)$ and thus generalize some results of Biroli and Maheux, and Wang 2007. We provide several examples.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133