全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Dehn surgery on knots of wrapping number 2

Full-Text   Cite this paper   Add to My Lib

Abstract:

Suppose $K$ is a hyperbolic knot in a solid torus $V$ intersecting a meridian disk $D$ twice. We will show that if $K$ is not the Whitehead knot and the frontier of a regular neighborhood of $K \cup D$ is incompressible in the knot exterior, then $K$ admits at most one exceptional surgery, which must be toroidal. Embedding $V$ in $S^3$ gives infinitely many knots $K_n$ with a slope $r_n$ corresponding to a slope $r$ of $K$ in $V$. If $r$ surgery on $K$ in $V$ is toroidal then either all but at most three $K_n(r_n)$ are toroidal, or they are all reducible or small Seifert fibered with two common singular fiber indices. These will be used to classify exceptional surgeries on wrapped Montesinos knots in solid torus, obtained by connecting the top endpoints of a Montesinos tangle to the bottom endpoints by two arcs wrapping around the solid torus.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133