全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

The strong converse inequality for de la Vallée Poussin means on the sphere

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper discusses the approximation by de la Vall\'{e}e Poussin means $V_nf$ on the unit sphere. Especially, the lower bound of approximation is studied. As a main result, the strong converse inequality for the means is established. Namely, it is proved that there are constants $C_1$ and $C_2$ such that \begin{eqnarray*} C_1\omega(f,\frac{1}{\sqrt n})_p \leq \|V_{n}f-f\|_p \leq C_2\omega(f,\frac{1}{\sqrt n})_p \end{eqnarray*} for any $p$-th Lebesgue integrable or continuous function $f$ defined on the sphere, where $\omega(f,t)_p$ is the modulus of smoothness of $f$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133