全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Minimal-memory, non-catastrophic, polynomial-depth quantum convolutional encoders

DOI: 10.1109/TIT.2012.2220520

Full-Text   Cite this paper   Add to My Lib

Abstract:

Quantum convolutional coding is a technique for encoding a stream of quantum information before transmitting it over a noisy quantum channel. Two important goals in the design of quantum convolutional encoders are to minimize the memory required by them and to avoid the catastrophic propagation of errors. In a previous paper, we determined minimal-memory, non-catastrophic, polynomial-depth encoders for a few exemplary quantum convolutional codes. In this paper, we elucidate a general technique for finding an encoder of an arbitrary quantum convolutional code such that the encoder possesses these desirable properties. We also provide an elementary proof that these encoders are non-recursive. Finally, we apply our technique to many quantum convolutional codes from the literature.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133