全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

The peak sidelobe level of random binary sequences

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $A_n=(a_0,a_1,\dots,a_{n-1})$ be drawn uniformly at random from $\{-1,+1\}^n$ and define \[ M(A_n)=\max_{01$}. \] It is proved that $M(A_n)/\sqrt{n\log n}$ converges in probability to $\sqrt{2}$. This settles a problem first studied by Moon and Moser in the 1960s and proves in the affirmative a recent conjecture due to Alon, Litsyn, and Shpunt. It is also shown that the expectation of $M(A_n)/\sqrt{n\log n}$ tends to $\sqrt{2}$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133