全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

On Yau rigidity theorem for minimal submanifolds in spheres

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this note, we investigate the well-known Yau rigidity theorem for minimal submanifolds in spheres. Using the parameter method of Yau and the DDVV inequality verified by Lu, Ge and Tang, we prove that if $M$ is an $n$-dimensional oriented compact minimal submanifold in the unit sphere $S^{n+p}(1)$, and if $K_{M}\geq\frac{sgn(p-1)p}{2(p+1)},$ then $M$ is either a totally geodesic sphere, the standard immersion of the product of two spheres, or the Veronese surface in $S^4(1)$. Here $sgn(\cdot)$ is the standard sign function. We also extend the rigidity theorem above to the case where $M$ is a compact submanifold with parallel mean curvature in a space form.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133