全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Continuous symmetrization via polarization

Full-Text   Cite this paper   Add to My Lib

Abstract:

We discuss a one-parameter family of transformations which changes sets and functions continuously into their (k,n)-Steiner symmetrizations. Our construction consists of two stages. First, we employ a continuous symmetrization introduced by the author in 1990 to transform sets and functions into their one-dimensional Steiner symmetrization. Some of our proofs in this stage rely on a simple rearrangement called polarization. In the second stage, we use an approximation theorem due to Blaschke and Sarvas to give an inductive definition of the continuous (k,n)-Steiner symmetrization for any 2\leq k \leq n. This transformation provides us with the desired continuous path, along which all basic characteristics of sets and functions vary monotonically. The latter leads to continuous versions of several convolution type inequalities and Dirichlet's type inequalities as well as to continuous versions of comparison theorems for solutions of some elliptic and parabolic partial differential equations.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133