全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

On the order of an automorphism of a smooth hypersurface

DOI: 10.1007/s11856-012-0177-y

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we give an effective criterion as to when a positive integer q is the order of an automorphism of a smooth hypersurface of dimension n and degree d, for every d>2, n>1, (n,d)\neq (2,4), and \gcd(q,d)=\gcd(q,d-1)=1. This allows us to give a complete criterion in the case where q=p is a prime number. In particular, we show the following result: If X is a smooth hypersurface of dimension n and degree d admitting an automorphism of prime order p then p<(d-1)^{n+1}; and if p>(d-1)^n then X is isomorphic to the Klein hypersurface, n=2 or n+2 is prime, and p=\Phi_{n+2}(1-d) where \Phi_{n+2} is the (n+2)-th cyclotomic polynomial. Finally, we provide some applications to intermediate jacobians of Klein hypersurfaces.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133