全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Acceleration of generalized hypergeometric functions through precise remainder asymptotics

DOI: 10.1007/s11075-011-9499-9

Full-Text   Cite this paper   Add to My Lib

Abstract:

We express the asymptotics of the remainders of the partial sums {s_n} of the generalized hypergeometric function q+1_F_q through an inverse power series z^n n^l \sum_k c_k/n^k, where the exponent l and the asymptotic coefficients {c_k} may be recursively computed to any desired order from the hypergeometric parameters and argument. From this we derive a new series acceleration technique that can be applied to any such function, even with complex parameters and at the branch point z=1. For moderate parameters (up to approximately ten) a C implementation at fixed precision is very effective at computing these functions; for larger parameters an implementation in higher than machine precision would be needed. Even for larger parameters, however, our C implementation is able to correctly determine whether or not it has converged; and when it converges, its estimate of its error is accurate.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133