全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

A geometric proof of the colored Tverberg theorem

Full-Text   Cite this paper   Add to My Lib

Abstract:

The colored Tverberg theorem asserts that for every d and r there exists t=t(d,r) such that for every set C in R^d of cardinality (d+1)t, partitioned into t-point subsets C_1,C_2,...,C_{d+1} (which we think of as color classes; e.g., the points of C_1 are red, the points of C_2 blue, etc.), there exist r disjoint sets R_1,R_2,...,R_r \subseteq C that are "rainbow", meaning that |R_i \cap C_j| < 2 for every i,j, and whose convex hulls all have a common point. All known proofs of this theorem are topological. We present a geometric version of a recent beautiful proof by Blagojevi\'c, Matschke, and Ziegler, avoiding a direct use of topological methods. The purpose of this de-topologization is to make the proof more concrete and intuitive, and accessible to a wider audience.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133