全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Deformation of the O'Grady moduli spaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we study moduli spaces of sheaves on an abelian or projective K3 surface. If $S$ is a K3, $v=2w$ is a Mukai vector on $S$, where $w$ is primitive and $w^{2}=2$, and $H$ is a $v-$generic polarization on $S$, then the moduli space $M_{v}$ of $H-$semistable sheaves on $S$ whose Mukai vector is $v$ admits a symplectic resolution $\widetilde{M}_{v}$. A particular case is the $10-$dimensional O'Grady example $\widetilde{M}_{10}$ of irreducible symplectic manifold. We show that $\widetilde{M}_{v}$ is an irreducible symplectic manifold which is deformation equivalent to $\widetilde{M}_{10}$ and that $H^{2}(M_{v},\mathbb{Z})$ is Hodge isometric to the sublattice $v^{\perp}$ of the Mukai lattice of $S$. Similar results are shown when $S$ is an abelian surface.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133