全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Least squares approximations of measures via geometric condition numbers

DOI: 10.1112/S0025579311001720

Full-Text   Cite this paper   Add to My Lib

Abstract:

For a probability measure on a real separable Hilbert space, we are interested in "volume-based" approximations of the d-dimensional least squares error of it, i.e., least squares error with respect to a best fit d-dimensional affine subspace. Such approximations are given by averaging real-valued multivariate functions which are typically scalings of squared (d+1)-volumes of (d+1)-simplices. Specifically, we show that such averages are comparable to the square of the d-dimensional least squares error of that measure, where the comparison depends on a simple quantitative geometric property of it. This result is a higher dimensional generalization of the elementary fact that the double integral of the squared distances between points is proportional to the variance of measure. We relate our work to two recent algorithms, one for clustering affine subspaces and the other for Monte-Carlo SVD based on volume sampling.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133