全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1997 

Multidimensional extension of the generalized Chowla-Selberg formula

DOI: 10.1007/s002200050472

Full-Text   Cite this paper   Add to My Lib

Abstract:

After recalling the precise existence conditions of the zeta function of a pseudodifferential operator, and the concept of reflection formula, an exponentially convergent expression for the analytic continuation of a multidimensional inhomogeneous Epstein-type zeta function of the general form \zeta_{A,\vec{b},q} (s) = \sum_{\vec{n}\in Z^p (\vec{n}^T A \vec{n} +\vec{b}^T \vec{n}+q)^{-s}, with $A$ the $p\times p$ matrix of a quadratic form, $\vec{b}$ a $p$ vector and $q$ a constant, is obtained. It is valid on the whole complex $s$-plane, is exponentially convergent and provides the residua at the poles explicitly. It reduces to the famous formula of Chowla and Selberg in the particular case $p=2$, $\vec{b}= \vec{0}$, $q=0$. Some variations of the formula and physical applications are considered.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133