全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1997 

The tangent space at a special symplectic instanton bundle on P^{2n+1}

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $MI_{Simp,P^{2n+1}}(k)$ be the moduli space of stable symplectic instanton bundles on $P^{2n+1}$ with second Chern class $c_2=k$ (it is a closed subscheme of the moduli space $MI_{P^{2n+1}}(k)$), We prove that the dimension of its Zariski tangent space at a special (symplectic) instanton bundle is $2k(5n-1)+4n^2-10n+3, k\geq 2$. It follows that special symplectic instanton bundles are smooth points for $ k \leq 3 $

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133