全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1997 

On the zeros of the Hahn-Exton q-Bessel function and associated q-Lommel polynomials

Full-Text   Cite this paper   Add to My Lib

Abstract:

For the Bessel function \begin{equation} \label{bessel} J_{\nu}(z) = \sum\limits_{k=0}^{\infty} \frac{(-1)^k \left( \frac{z}{2} \right)^{\nu+2k}}{k! \Gamma(\nu+1+k)} \end{equation} there exist several $q$-analogues. The oldest $q$-analogues of the Bessel function were introduced by F. H. Jackson at the beginning of this century, see M. E. H. Ismail \cite{Is1} for the appropriate references. Another $q$-analogue of the Bessel function has been introduced by W. Hahn in a special case and by H. Exton in full generality, see R. F. Swarttouw \cite{Sw1} for a historic overview. Here we concentrate on properties of the Hahn-Exton $q$-Bessel function and in particular on its zeros and the associated $q$-Lommel polynomials.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133