全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1997 

Complex Matrix Models and Statistics of Branched Coverings of 2D Surfaces

DOI: 10.1007/s002200050269

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a complex matrix gauge model defined on an arbitrary two-dimensional orientable lattice. We rewrite the model's partition function in terms of a sum over representations of the group U(N). The model solves the general combinatorial problem of counting branched covers of orientable Riemann surfaces with any given, fixed branch point structure. We then define an appropriate continuum limit allowing the branch points to freely float over the surface. The simplest such limit reproduces two-dimensional chiral U(N) Yang-Mills theory and its string description due to Gross and Taylor.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133