全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1997 

Rigidity properties of locally scaling fractals

Full-Text   Cite this paper   Add to My Lib

Abstract:

Local scaling of a set means that in a neighborhood of a point the structure of the set can be mapped into a finer scale structure of the set. These scaling transformations are compact sets of locally affine (that is: with uniformly $\alpha$-H\"older continuous derivatives) contractions. In this setting, without any assumption on the spacing of these contractions such as the open set condition, we show that the measure of the set is an upper semi-continuous of the scaling transformation in the $C^0$-topology. With a restriction on the 'non-conformality' (see below) the Hausdorff dimension is lower semi-continous function in the $C^{1}$-topology. We include some examples to show that neither of these notions is continuous.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133