全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1997 

Polynomial Retracts and the Jacobian Conjecture

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $ K[x, y]$ be the polynomial algebra in two variables over a field $K$ of characteristic $0$. A subalgebra $R$ of $K[x, y]$ is called a retract if there is an idempotent homomorphism (a {\it retraction}, or {\it projection}) $\varphi: K[x, y] \to K[x, y]$ such that $\varphi(K[x, y]) = R$. The presence of other, equivalent, definitions of retracts provides several different methods of studying them, and brings together ideas from combinatorial algebra, homological algebra, and algebraic geometry. In this paper, we characterize all the retracts of $ K[x, y]$ up to an automorphism, and give several applications of this characterization, in particular, to the well-known Jacobian conjecture. Notably, we prove that if a polynomial mapping $\varphi$ of $K[x,y]$ has invertible Jacobian matrix {\it and } fixes a non-constant polynomial, then $\varphi$ is an automorphism.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133