全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1997 

Cohomology of Lie superalgebras and of their generalizations

DOI: 10.1063/1.532508

Full-Text   Cite this paper   Add to My Lib

Abstract:

The cohomology groups of Lie superalgebras and, more generally, of color Lie algebras, are introduced and investigated. The main emphasis is on the case where the module of coefficients is non-trivial. Two general propositions are proved, which help to calculate the cohomology groups. Several examples are included to show the peculiarities of the super case. For L = sl(1|2), the cohomology groups H^1(L,V) and H^2(L,V), with V a finite-dimensional simple graded L-module, are determined, and the result is used to show that H^2(L,U(L)) (with U(L) the enveloping algebra of L) is trivial. This implies that the superalgebra U(L) does not admit of any non-trivial formal deformations (in the sense of Gerstenhaber). Garland's theory of universal central extensions of Lie algebras is generalized to the case of color Lie algebras.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133