全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1993 

Using sums of squares to prove that certain entire functions have only real zeros

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is shown how sums of squares of real valued functions can be used to give new proofs of the reality of the zeros of the Bessel functions $J_\alpha (z)$ when $\alpha \ge -1,$ confluent hypergeometric functions ${}_0F_1(c\/; z)$ when $c>0$ or $0>c>-1$, Laguerre polynomials $L_n^\alpha(z)$ when $\alpha \ge -2,$ and Jacobi polynomials $P_n^{(\alpha,\beta)}(z)$ when $\alpha \ge -1$ and $ \beta \ge -1.$ Besides yielding new inequalities for $|F(z)|^2,$ where $F(z)$ is one of these functions, the derived identities lead to inequalities for $\partial |F(z)|^2/\partial y$ and $\partial ^2 |F(z)|^2/\partial y^2,$ which also give new proofs of the reality of the zeros.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133