全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1993 

Localization for nonabelian group actions

Full-Text   Cite this paper   Add to My Lib

Abstract:

Suppose $X$ is a compact symplectic manifold acted on by a compact Lie group $K$ (which may be nonabelian) in a Hamiltonian fashion, with moment map $\mu: X \to {\rm Lie}(K)^*$ and Marsden-Weinstein reduction $\xred = \mu^{-1}(0)/K$. There is then a natural surjective map $\kappa_0$ from the equivariant cohomology $H^*_K(X) $ of $X$ to the cohomology $H^*(\xred)$. In this paper we prove a formula (Theorem 8.1, the residue formula) for the evaluation on the fundamental class of $\xred$ of any $\eta_0 \in H^*(\xred)$ whose degree is the dimension of $\xred$, provided that $0$ is a regular value of the moment map $\mu$ on $X$. This formula is given in terms of any class $\eta \in H^*_K(X)$ for which $\kappa_0(\eta ) = \eta_0$, and involves the restriction of $\eta$ to $K$-orbits $KF$ of components $F \subset X$ of the fixed point set of a chosen maximal torus $T \subset K$. Since $\kappa_0$ is

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133