全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1993 

The k_t--functional for the interpolation couple L^\infty(dμ;L^1(dν)), L^\infty(dν;L^1(dμ))

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $(M,\mu)$ and $(N,\nu)$ be measure spaces. In this paper, we study the $K_t$--\,functional for the couple $$A_0=L^\infty(d\mu\,; L^1(d\nu))\,,~~A_1=L^\infty(d\nu\,; L^1(d\mu))\,. $$ Here, and in what follows the vector valued $L^p$--\,spaces $L^p(d\mu\,; L^q(d\nu))$ are meant in Bochner's sense. One of our main results is the following, which can be viewed as a refinement of a lemma due to Varopoulos [V]. \proclaim Theorem 0.1. Let $(A_0,A_1)$ be as above. Then for all $f$ in $A_0+A_1$ we have $${1\over 2}\,K_t(f;\,A_0\,,A_1)\leq \sup\,\bigg\{ \Big(\mu(E)\vee t^{-1}\nu(F)\Big)^{-1} \int_{E\times F} \vert f\vert\,d\mu\,d\nu\,\bigg\} \leq K_t(f;\,A_0\,,A_1)\,,$$ where the supremum runs over all measurable subsets $E\subset M\,,~ F\subset N$ with positive and finite measure and $u\!\vee\!v$ denotes the maximum of the reals $u$ and $v$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133