全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1993 

Relative $K$-cycles and elliptic boundary conditions

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we discuss the following conjecture raised by Baum-Douglas: For any first-order elliptic differential operator $D$ on smooth manifold $M$ with boundary $\p M$, $D$ possesses an elliptic boundary condition if and only if $\partial [D]$ = 0 in $K_1(\partial M)$, where $[D]$ is the relative $K$-cycle in $K_0(M, \partial M)$ corresponding to $D$. We prove the ``if'' part of this conjecture for $\dim(M)$ $\not=$ 4, 5, 6, 7 and the ``only if'' part of the conjecture for arbitrary dimension.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133