|
Mathematics 2015
Construction of maximum likelihood estimator in the mixed fractional--fractional Brownian motion model with double long-range dependenceDOI: 10.15559/15-VMSTA28 Abstract: We construct an estimator of the unknown drift parameter $\theta\in {\mathbb{R}}$ in the linear model \[X_t=\theta t+\sigma_1B^{H_1}(t)+\sigma_2B^{H_2}(t),\;t\in[0,T],\] where $B^{H_1}$ and $B^{H_2}$ are two independent fractional Brownian motions with Hurst indices $H_1$ and $H_2$ satisfying the condition $\frac{1}{2}\leq H_1
|