全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

Equivariant K3 Invariants

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this note, we describe a connection between the enumerative geometry of curves in K3 surfaces and the chiral ring of an auxiliary superconformal field theory. We consider the invariants calculated by Yau--Zaslow (capturing the Euler characters of the moduli spaces of D2-branes on curves of given genus), together with their refinements to carry additional quantum numbers by Katz--Klemm--Vafa (KKV), and Katz--Klemm--Pandharipande (KKP). We show that these invariants can be reproduced by studying the Ramond ground states of an auxiliary chiral superconformal field theory which has recently been observed to give rise to mock modular moonshine for a variety of sporadic simple groups that are subgroups of Conway's group. We also study equivariant versions of these invariants. A K3 sigma model is specified by a choice of 4-plane in the K3 D-brane charge lattice. Symmetries of K3 sigma models are naturally identified with 4-plane preserving subgroups of the Conway group, according to the work of Gaberdiel--Hohenegger--Volpato, and one may consider corresponding equivariant refined K3 Gopakumar--Vafa invariants. The same symmetries naturally arise in the auxiliary CFT state space, affording a suggestive alternative view of the same computation. We comment on a lift of this story to the generating function of elliptic genera of symmetric products of K3 surfaces.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133