|
Mathematics 2015
A note-question on partitions of semigroupsAbstract: Given a semigroup $S$ and an $n$-partition $\mathcal{P}$ of $S$, $n\in \mathbb{N}$, do there exist $A\in \mathcal{P}$ and a subset $F$ of $S$ such that $S=F ^{-1} \{x \in S: x A \bigcap A\neq\emptyset\}$ and $|F |\leq n$? We give an affirmative answer provided that either $S$ is finite or $n=2$.
|