全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

Bertrand's Postulate for Number Fields

Full-Text   Cite this paper   Add to My Lib

Abstract:

Consider an algebraic number field, $K$, and its ring of integers, $\mathcal{O}_K$. There exists a smallest $B_K>1$ such that for any $x>1$ we can find a prime ideal, $\mathfrak{p}$, in $\mathcal{O}_K$ with norm $N(\mathfrak{p})$ in the interval $[x,B_Kx]$. This is a generalization of Bertrand's postulate to number fields, and in this paper we demonstrate that having a good asymptotic estimate for the number of ideals in $\mathcal{O}_K$ less than $x$ can produce an upper bound for $B_K$ in terms of the invariants of $K$. We compare the bounds obtained via this technique to what can be obtained from an effective prime ideal theorem.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133