全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

On multivaled fixed-point free maps on R^n

Full-Text   Cite this paper   Add to My Lib

Abstract:

To formulate our results let $f$ be a continuous map from $\mathbb R^n$ to $2^{\mathbb R^n}$ and $k$ a natural number such that $|f(x)|\leq k$ for all $x$. We prove that $f$ is fixed-point free if and only if its continuous extension $\tilde f:\beta \mathbb R^n\to 2^{\beta \mathbb R^n}$ is fixed-point free. If one wishes to stay within metric terms, the result can be formulated as follows: $f$ is fixed-point free if and only if there exists a continuous fixed-point free extension $\bar f: b\mathbb R^n\to 2^{b\mathbb R^n}$ for some metric compactificaton $b\mathbb R^n$ of $\mathbb R^n$. Using the classical notion of colorablity, we prove that such an $f$ is always colorable. Moreover, a number of colors sufficient to paint the graph can be expressed as a function of $n$ and $k$ only. The mentioned results also hold if the domain is replaced by any closed subspace of $\mathbb R^n$ without any changes in the range.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133