全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

The contraction rate in Thompson metric of order-preserving flows on a cone - application to generalized Riccati equations

DOI: 10.1016/j.jde.2014.01.024

Full-Text   Cite this paper   Add to My Lib

Abstract:

We give a formula for the Lipschitz constant in Thompson's part metric of any order-preserving flow on the interior of a (possibly infinite dimensional) closed convex pointed cone. This provides an explicit form of a characterization of Nussbaum concerning non order-preserving flows. As an application of this formula, we show that the flow of the generalized Riccati equation arising in stochastic linear quadratic control is a local contraction on the cone of positive definite matrices and characterize its Lipschitz constant by a matrix inequality. We also show that the same flow is no longer a contraction in other natural Finsler metrics on this cone, including the standard invariant Riemannian metric. This is motivated by a series of contraction properties concerning the standard Riccati equation, established by Bougerol, Liverani, Wojtowski, Lawson, Lee and Lim: we show that some of these properties do, and that some other do not, carry over to the generalized Riccati equation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133