全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1999 

Topology of cyclic configuration spaces and periodic trajectories of multi-dimensional billiards

Full-Text   Cite this paper   Add to My Lib

Abstract:

We give lowed bounds on the number of periodic trajectories in strictly convex smooth billiards in $\R^{m+1}$ for $m\ge 3$. For plane billiards (when m=1) such bounds were obtained by G. Birkhoff in the 1920's. Our proof is based on topological methods of calculus of variations - equivariant Morse and Lusternik - Schirelman theories. We compute the equivariant cohomology ring of the cyclic configuration space of the sphere $S^m$, i.e., the space of n-tuples of points $(x_1, ..., x_n)$, where $x_i\in S^m$ and $x_i\ne x_{i+1}$ for i=1,2, ..., n.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133