全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

Embedded minimal surfaces of finite topology

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we prove that a complete, embedded minimal surface $M$ in $\mathbb{R}^3$ with finite topology and compact boundary (possibly empty) is conformally a compact Riemann surface $\overline{M}$ with boundary punctured in a finite number of interior points and that $M$ can be represented in terms of meromorphic data on its conformal completion $\overline{M}$. In particular, we demonstrate that $M$ is a minimal surface of finite type and describe how this property permits a classification of the asymptotic behavior of $M$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133