全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

A variable metric forward--backward method with extrapolation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Forward-backward methods are a very useful tool for the minimization of a functional given by the sum of a differentiable term and a nondifferentiable one and their investigation has experienced several efforts from many researchers in the last decade. In this paper we focus on the convex case and, inspired by recent approaches for accelerating first-order iterative schemes, we develop a scaled inertial forward-backward algorithm which is based on a metric changing at each iteration and on a suitable extrapolation step. Unlike standard forward-backward methods with extrapolation, our scheme is able to handle functions whose domain is not the entire space. Both {an ${\mathcal O}(1/k^2)$ convergence rate estimate on the objective function values and the convergence of the sequence of the iterates} are proved. Numerical experiments on several {test problems arising from image processing, compressed sensing and statistical inference} show the {effectiveness} of the proposed method in comparison to well performing {state-of-the-art} algorithms.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133