|
Mathematics 2015
$(1-2u^2)$-constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p$Abstract: Let $\mathbb{F}_p$ be a finite field and $u$ be an indeterminate. This article studies $(1-2u^2)$-constacyclic codes over the ring $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p$, where $u^3=u$. We describe generator polynomials of this kind of codes and investigate the structural properties of these codes by a decomposition theorem.
|