全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

A variational principle for cyclic polygons with prescribed edge lengths

Full-Text   Cite this paper   Add to My Lib

Abstract:

We provide a new proof of the elementary geometric theorem on the existence and uniqueness of cyclic polygons with prescribed side lengths. The proof is based on a variational principle involving the central angles of the polygon as variables. The uniqueness follows from the concavity of the target function. The existence proof relies on a fundamental inequality of information theory. We also provide proofs for the corresponding theorems of spherical and hyperbolic geometry (and, as a byproduct, in $1+1$ spacetime). The spherical theorem is reduced to the euclidean one. The proof of the hyperbolic theorem treats three cases separately: Only the case of polygons inscribed in compact circles can be reduced to the euclidean theorem. For the other two cases, polygons inscribed in horocycles and hypercycles, we provide separate arguments. The hypercycle case also proves the theorem for "cyclic" polygons in $1+1$ spacetime.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133