全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

Gromov hyperbolicity of minor graphs

Full-Text   Cite this paper   Add to My Lib

Abstract:

If $X$ is a geodesic metric space and $x_1,x_2,x_3\in X$, a geodesic triangle $T=\{x_1,x_2,x_3\}$ is the union of the three geodesics $[x_1x_2]$, $[x_2x_3]$ and $[x_3x_1]$ in $X$. The space $X$ is $\delta$-hyperbolic (in the Gromov sense) if any side of $T$ is contained in a $\delta$-neighborhood of the union of the two other sides, for every geodesic triangle $T$ in $X$. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it. In the context of graphs, to remove and to contract an edge of a graph are natural transformations. The main aim in this work is to obtain quantitative information about the distortion of the hyperbolicity constant of the graph $G \setminus e$ (respectively, $\,G/e\,$) obtained from the graph $G$ by deleting (respectively, contracting) an arbitrary edge $e$ from it. This work provides information about the hyperbolicity constant of minor graphs.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133