全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

Steinhaus conditions for convex polyhedra

Full-Text   Cite this paper   Add to My Lib

Abstract:

On a convex surface $S$, the antipodal map $F$ associates to a point $p$ the set of farthest points from $p$, with respect to the intrinsic metric. $S$ is called a Steinhaus surface if $F$ is a single-valued involution. We prove that any convex polyhedron has an open and dense set of points $p$ admitting a unique antipode $F_p$, which in turn admits a unique antipode $F_{F_p}$, distinct from $p$. In particular, no convex polyhedron is Steinhaus.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133