All Title Author
Keywords Abstract

Mathematics  2015 

On the Convergence Analysis of Asynchronous Distributed Quadratic Programming via Dual Decomposition

Full-Text   Cite this paper   Add to My Lib


In this paper, we analyze the convergence as well as the rate of convergence of asynchronous distributed quadratic programming (QP) with dual decomposition technique. In general, distributed optimization requires synchronization of data at each iteration step due to the interdependency of data. This synchronization latency may incur a large amount of waiting time caused by an idle process during computation. We aim to attack this synchronization penalty in distributed QP problems by implementing asynchronous update of dual variable. The price to pay for adopting asynchronous computing algorithms is unpredictability of the solution, resulting in a tradeoff between speedup and accuracy. Thus, the convergence to an optimal solution is not guaranteed owing to the stochastic behavior of asynchrony. In this paper, we employ the switched system framework as an analysis tool to investigate the convergence of asynchronous distributed QP. This switched system will facilitate analysis on asynchronous distributed QP with dual decomposition, providing necessary and sufficient conditions for the mean square convergence. Also, we provide an analytic expression for the rate of convergence through the switched system, which enables performance analysis of asynchronous algorithms as compared with synchronous case. To verify the validity of the proposed methods, numerical examples are presented with an implementation of asynchronous parallel QP using OpenMP.


comments powered by Disqus

Contact Us


微信:OALib Journal