|
Mathematics 2015
A remark on monotonicity in Bernoulli bond PercolationDOI: 10.1007/s10955-015-1284-z Abstract: Consider an anisotropic independent bond percolation model on the $d$-dimensional hypercubic lattice, $d\geq 2$, with parameter $p$. We show that the two point connectivity function $P_{p}(\{(0,\dots,0)\leftrightarrow (n,0,\dots,0)\})$ is a monotone function in $n$ when the parameter $p$ is close enough to 0. Analogously, we show that truncated connectivity function $P_{p}(\{(0,\dots,0)\leftrightarrow (n,0,\dots,0), (0,\dots,0)\nleftrightarrow\infty\})$ is also a monotone function in $n$ when $p$ is close to 1.
|