|
Mathematics 2015
On the distinguished spectrum of $Sp_{2n}$ with respect to $Sp_n\times Sp_n$Abstract: Given a reductive group $G$ and a reductive subgroup $H$, both defined over a number field $F$, we introduce the notion of the $H$-distinguished automorphic spectrum of $G$ and analyze it for the pairs $(GL_{2n},Sp_n)$ and $(Sp_{2n},Sp_n\times Sp_n)$. In the first case we give a complete description using results of Jacquet--Rallis, Offen and Yamana. In the second case we give an upper bound, generalizing vanishing results of Ash--Ginzburg--Rallis and a lower bound, extending results of Ginzburg--Rallis--Soudry.
|