全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

Geometry of planar surfaces and exceptional fillings

Full-Text   Cite this paper   Add to My Lib

Abstract:

If a hyperbolic 3-manifold admits an exceptional Dehn filling, then the length of the slope of that Dehn filling is known to be at most six. However, the bound of six appears to be sharp only in the toroidal case. In this paper, we investigate slope lengths of other exceptional fillings. We construct hyperbolic 3-manifolds that have the longest known slopes for reducible fillings. As an intermediate step, we show that the problem of finding the longest such slope is equivalent to a problem on the maximal density horoball packings of planar surfaces, which should be of independent interest. We also discuss lengths of slopes of other exceptional Dehn fillings, and prove that six is not realized by a slope corresponding to a small Seifert fibered space filling.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133