全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

Newton-Okounkov bodies for Bott-Samelson varieties and string polytopes for generalized Demazure modules

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $Z_{\bf i}$ (resp., $X(w)$) be the Bott-Samelson variety (resp., the Schubert variety), and $\mathcal{L}_{\bf m}$ (resp., $\mathcal{L}_\lambda$) a line bundle on $Z_{\bf i}$ (resp., on $X(w)$). We can think of $H^0(Z_{\bf i}, \mathcal{L}_{\bf m})$ as a generalization of $H^0(X(w), \mathcal{L}_\lambda)$. We extend the string polytope for the Demazure module $H^0(X(w), \mathcal{L}_\lambda)^\ast$ to $H^0(Z_{\bf i}, \mathcal{L}_{\bf m})^\ast$, and prove that it is identical to the Newton-Okounkov body of $Z_{\bf i}$ with respect to a specific valuation. As applications of this result, we show that these are indeed polytopes, and also construct a basis of $H^0(Z_{\bf i}, \mathcal{L}_{\bf m})$, which can be thought of as a perfect basis.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133