全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

On solvable subgroups of the Cremona group

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Cremona group $\mathrm{Bir}(\mathbb{P}^2_\mathbb{C})$ is the group of birational self-maps of $\mathbb{P}^2_\mathbb{C}$. Using the action of $\mathrm{Bir}(\mathbb{P}^2_\mathbb{C})$ on the Picard-Manin space of $\mathbb{P}^2_\mathbb{C}$ we characterize its solvable subgroups. If $\mathrm{G}\subset\mathrm{Bir}(\mathbb{P}^2_\mathbb{C})$ is solvable, non abelian, and infinite, then up to finite index: either any element of $\mathrm{G}$ is of finite order or conjugate to an automorphism of $\mathbb{P}^2_\mathbb{C}$, or $\mathrm{G}$ preserves a unique fibration that is rational or elliptic, or $\mathrm{G}$ is, up to conjugacy, a subgroup of the group generated by one hyperbolic monomial map and the diagonal automorphisms. We also give some corollaries.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133