全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

Analyzing the Wu metric on a class of eggs in $\mathbb{C}^n$ -- II

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the Wu metric for the non-convex domains of the form \[ E_{2m} = \big\{ z \in \mathbb{C}^n : \vert z_1 \vert^{2m} + \vert z_2 \vert^2 + \ldots + \vert z_{n-1} \vert^2 + \vert z_n \vert^{2} <1 \big \}, \] where $ 0 < m < 1/2$. Explicit expressions for the Kobayashi metric and the Wu metric on such pseudo-eggs $E_{2m}$ are obtained. The Wu metric is then verified to be a continuous Hermitian metric on $ E_{2m} $ which is real analytic everywhere except along the complex hypersurface $ Z = \{ (0, z_2, \ldots, z_n ) \in E_{2m} \} $. We also show that the holomorphic sectional curvature of the Wu metric for this non-compact family of pseudoconvex domains is bounded above in the sense of currents by a negative constant independent of $m$. This verifies a conjecture of S. Kobayashi and H. Wu for such $E_{2m}$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133