全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

On local holomorphic maps preserving invariant (p,p)-forms between bounded symmetric domains

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $D, \Omega_1, ..., \Omega_m$ be irreducible bounded symmetric domains. We study local holomorphic maps from $D$ into $\Omega_1 \times... \Omega_m$ preserving the invariant $(p, p)$-forms induced from the normalized Bergman metrics up to conformal constants. We show that the local holomorphic maps extends to algebraic maps in the rank one case for any $p$ and in the rank at least two case for certain sufficiently large $p$. The total geodesy thus follows if $D=\mathbb{B}^n, \Omega_i = \mathbb{B}^{N_i}$ for any $p$ or if $D=\Omega_1 =...=\Omega_m$ with rank$(D)\geq 2$ and $p$ sufficiently large. As a consequence, the algebraic correspondence between quasi-projective varieties $D / \Gamma$ preserving invariant $(p, p)$-forms is modular, where $\Gamma$ is a torsion free, discrete, finite co-volume subgroup of Aut$(D)$. This solves partially a problem raised by Mok.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133